Tue. Jan 21st, 2025

Flow instrumentation manufacturer from China: The third case is that, during the commissioning stage of a platform construction, when the liquid level is higher than 3800mm, the radar level meter of the dirty oil tank will frequently jump to 0mm, which leads to the shutdown of the fourth-stage production unit. After on-site inspection, the power supply voltage of the radar level meter transmitter is only 9.5V, which is lower than the working power supply voltage of the radar level meter. By further searching for the cause of the failure, found that when the high liquid level, the voltage at the power supply is 23.7V, the safety gate output drops to 9.7V, judged as a safety gate transmitter failure. After replacing the safety grid, the voltage returns to normal, the cabin radar level meter in the test to rule out the problem. Find extra information at flow instrumentation.

Measuring principle of radar water level meter: The radar level gauge adopts the working mode of transmitting-reflecting-receiving. The electromagnetic wave emitted by the antenna is reflected by the surface of the measured object and then received by the antenna. After measuring the distance from the water surface to the radar antenna, the elevation of the water surface can be calculated according to the elevation of the radar antenna. The radar water level meter adopts pulse wave technology with low power consumption. It can be powered by two-wire 24 VDC, 485 interface output, or can be directly powered by 12 VDC, SDI-12 interface output, with high accuracy and wider application range.

The performance of any level technology relative to instrument induced errors, calibration nuances, and vulnerabilities to process dynamics can have an immediate and adverse impact on fuel consumption. Seamless response to changes in demand and reducing maintenance associated with the instrumentation or damage to hardware are residual benefits that have their own financial ramifications; these aspects should also be considered when implementing any technology. In addition to the “open” or deaerating feedwater heater, the more common shell and tube heat exchangers/condensers can be found in larger scale steam generation cycles where their costs are offset by gains in thermal efficiency. The effectiveness of a shell and tube heat exchanger in transferring energy is contingent, barring hardware anomalies, on accurate level control.

Temperature Compensation- Precision in Any Environment Another advancement in guided radar level measurement technology is the incorporation of mechanisms that compensate for temperature variations. Temperature fluctuations in microwave module circuits can lead to inaccuracies in measuring levels. To tackle this challenge, radar level measurement systems have implemented creative solutions. A crucial aspect of these advancements involves allocating a portion of the radar transmission pulse as a reference pulse. This reference pulse serves as a benchmark for comparing measurements enabling temperature calibration. When temperature changes occur the radar sensor can adjust its measurements accordingly ensuring that environmental conditions have no impact on accuracy. This temperature compensation feature is particularly valuable in applications where significant temperature shifts are common. Industries dealing with temperatures or processes prone to variations, such as petrochemical or food manufacturing sectors, rely on precise measurements. Radar sensors equipped with temperature compensation mechanisms rise to the occasion by delivering reliable results despite changing conditions.

As one of the most professional magnetic level indicators manufacturers in China,Guangdong Kaidi Energy Technology Co., Ltd. provides customized solutions for a range of industrial automation process applications,such as mechanical float level indicator.We specialized in radar level gauge, fork type level switch,etc. These were implemented successfully, and KAIDI magnetic level gauge manufacturers products,such as radar level meter, magnetic level indicators, can be used in many different industries such as food & beverage, water, energy, pharmaceutical etc. Discover extra info on https://www.kaidi86.com/. Kaidi Energy is a level gauge manufacturer which more than 20 years of industrial automation experience.

The radar level gauge works by electromagnetic waves. Its working principle is to measure the specific liquid level by transmitting electromagnetic waves to the measured target. After the electromagnetic waves are emitted, they are reflected by the medium. For the radar level gauge, its key function is to ensure that it can transmit magnetrol guided wave radar signals smoothly. In our industrial production site, interference often occurs, so which interference sources will affect the measurement of the radar level gauge? let’s see.

If the radar level meter is unreasonably selected, the interference echo cannot be handled well, and the reliability of the instrument will be reduced. Therefore, the following factors should be considered when selecting a radar level meter: Conductivity and dielectric constant of the measured medium. The measured medium is a conductive liquid or a liquid with a dielectric constant above 4. Generally, a common radar is selected. Liquids with small dielectric constants (dielectric constants below 2) and some conductive solids often use precision radars or guided wave radars due to the large amount of interference echoes.

In addition, some silos in cement plants are very high, such as homogenizing silos of 50cm. It takes time and energy to board high silos to debug radar, so it is recommended to choose HART handheld operators that can be debugged remotely in the central control room. In the central control room, the range and other basic parameters can be set, and the radar echo waveform can be observed, and the waveform can be used for remote diagnosis and debugging, greatly reducing the on-site work intensity of the staff, to avoid the risk of climbing operation. The smart radar level gauge commonly used at present also has a function similar to “driving recorder”, that is, when the material surface mutation occurs on the scene, it can capture the radar echo waveform at that time, which is very useful for debugging the silo under complex conditions.

Working principle: Working principle of radar level gauge: UHF electromagnetic waves are transmitted to the liquid level of the container under test through the cable or antenna. When the electromagnetic wave touches the liquid level and is reflected back, the instrument detects the time difference between the initial wave and the echo, thereby calculating the liquid level height. Select guided wave radar or airborne radar according to the dielectric constant and measurement length of the measured medium.

There is AC interference and the voltage is high. For example, for the radar level meter used in the production line, the power supply requirement is 24VDC (typical value), but in the on-site measurement, it is found that the power supply is displayed as 27.2V, which is significantly higher than 24VDC, resulting in a large measurement result and even a radar level meter. crash phenomenon. The installation position of the radar level meter is incorrect, which leads to deviations in the measurement. For example, the accumulation of aggregates in the transfer bin is a “mountain”-shaped cone, but only one radar level meter is installed near the discharge port of the return belt. , the installation position is too close to the discharge opening of the return belt, and at the same time, it is too far from the discharge opening of the feeding belt on both sides. Just below the radar level meter is the drop point of the return belt. If the distance is too close, the aggregate in the falling process will interfere with the radar level meter and form false reflections.